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Abstract

Motivation: Phylogenetic algorithms have begun to see widespread use in cancer research to re-

construct processes of evolution in tumor progression. Developing reliable phylogenies for tumor

data requires quantitative models of cancer evolution that include the unusual genetic mechanisms

by which tumors evolve, such as chromosome abnormalities, and allow for heterogeneity between

tumor types and individual patients. Previous work on inferring phylogenies of single tumors by

copy number evolution assumed models of uniform rates of genomic gain and loss across different

genomic sites and scales, a substantial oversimplification necessitated by a lack of algorithms and

quantitative parameters for fitting to more realistic tumor evolution models.

Results: We propose a framework for inferring models of tumor progression from single-cell gene

copy number data, including variable rates for different gain and loss events. We propose a new

algorithm for identification of most parsimonious combinations of single gene and single chromo-

some events. We extend it via dynamic programming to include genome duplications. We

implement an expectation maximization (EM)-like method to estimate mutation-specific and

tumor-specific event rates concurrently with tree reconstruction. Application of our algorithms to

real cervical cancer data identifies key genomic events in disease progression consistent with prior

literature. Classification experiments on cervical and tongue cancer datasets lead to improved pre-

diction accuracy for the metastasis of primary cervical cancers and for tongue cancer survival.

Availability and implementation: Our software (FISHtrees) and two datasets are available at ftp://

ftp.ncbi.nlm.nih.gov/pub/FISHtrees.

Contact: russells@andrew.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tumor development and progression are evolutionary processes

(Nowell, 1976), and it has become ever more apparent that evolu-

tion is fundamental to public health problems in cancer treatment,

such as the failure of therapy due to drug resistance (Fisher et al.,

2013). The evolutionary nature of cancers prompted the observation

that one might reconstruct cancer progression processes using meth-

ods from phylogenetics, i.e. evolutionary tree-building (Desper

et al., 1999). Cancer phylogenetics was initially applied at the level

of populations of cancers by modeling individual aberrations, indi-

vidual tumors or tumor types as species (Desper et al., 1999, 2000;

Liu et al., 2009). Later, variants were developed to study evolution

of single tumors at the regional (Sprouffske et al., 2011) or cellular

(Pennington et al., 2007; Martins et al., 2012) levels. Phylogenetic

models have proven valuable for distinguishing driver genes from

passengers in tumor genomic data, explaining intra-tumor
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heterogeneity (Marusyk and Polyak, 2010), and predicting future

tumor progression (Urbschat et al., 2011). See (Beerenwinkel et al.,

2015) for a recent review.

Although the idea of adapting methods for reconstructing species

evolution to the study of tumors has proven powerful, the analogy

has limits because single cells in a tumor evolve differently from or-

ganisms within a population. For example, cancers typically exhibit

hypermutability, which can take the form of any of a number of

known ‘mutator phenotypes’, each with a distinct pattern of ele-

vated mutation rates (Loeb, 1991). The most recognized of these is a

pattern of chromosome instability (CIN) arising from dysfunction of

TP53 (Greenblatt et al., 1994). Other known sources of hypermut-

ability include microsatellite instability (MSI) resulting from defects

in DNA mismatch repair (Timmermann et al., 2010) and elevated

point mutation rates resulting from DNA polymerase defects (Di

Noia and Neuberger, 2007) or AID/APOBEC1 cytidine deaminase

dysregulation (Harris et al., 2002). These mutator phenotypes result

in mechanisms of genomic diversification different from those gener-

ally assumed in species tree inference. For example, CIN hypermut-

ability results in evolution primarily via copy number variations,

requiring mathematical models and algorithms different from those

generally used to study species evolution.

Although much is known about the specialized molecular mech-

anisms behind tumor evolution, work in tumor phylogenetics has

largely relied on conventional phylogeny algorithms designed for

inferring species evolution (Beerenwinkel et al., 2015). In recent

work, we sought to address this gap by developing phylogenetic al-

gorithms specifically to infer evolution by cancer-like CIN mechan-

isms of copy number variation (Chowdhury et al., 2013, 2014).

Even appropriate algorithms for tumor-like mechanisms of evolu-

tion are not enough to generate reliable trees, though, because

phylogenetics relies on accurate estimates of relative frequencies of

different evolutionary events to decide between distinct possible ex-

planations of extant genomes. Given the heterogeneity of mutator

phenotypes and the many ways they might interact in single tumors,

rates of different types of aberrations can be expected to vary widely

between tumor types, between individual tumors, or even between

clonal lineages of single tumors.

There has been limited work to date to estimate evolutionary

parameters of tumors, none to our knowledge scalable to the num-

bers of taxa seen in large single-cell datasets such as are considered

in the present work. Approaches using rate parameters for different

events have been applied to comparative genomic hybridization data

outside the context of phylogenetic algorithms (e.g. Hjelm et al.,

2006; Newton, 2002) and several groups proposed estimating rates

via maximum likelihood from bulk sequencing data from different

sections of a tumor (Greenman et al., 2010; Purdom et al., 2013), al-

though not for data on multiple single cells. Maley and colleagues

(Sprouffske et al., 2011) have inferred tumor evolution parameters

at a regional level by using Bayesian phylogeny models to fit phylog-

enies to profiles of small numbers of tumor regions. Similar

Bayesian models are typically favored in phylogenetics practice for

small numbers of taxa, due to their ability in principle to provide de-

tailed samples of tree and parameter space for complex evolutionary

models. However, the cost of computing such models grows quickly

in the number of taxa (Felsenstein, 2004). Even with very efficient

approximate Bayesian computation (ABC) algorithms (Beaumont,

2010), such approaches have been used only for small numbers of

sections (approximately 10–20) per tumor.

Fluorescence in situ hybridization (FISH) allows one to probe

copy numbers of small numbers of genomic markers in thousands of

single cells per study, and such studies have shown that single

tumors can have hundreds of genetically distinct cell types (Snuderl

et al., 2011; Szerlip et al., 2012; Heselmeyer-Haddad et al., 2012).

Large-scale single-cell sequencing studies, which offer a much more

complete picture of the genome than FISH but for many fewer cells,

have supported this view of extensive intercellular heterogeneity at

the cellular level (Wang et al., 2014), suggesting that tumor phyl-

ogeny approaches and their underlying models will need to scale to

hundreds or thousands of taxa per tumor to produce reliable models

of the evolution of cellular heterogeneity in single tumors. To date,

phylogenetic model inference with event rate estimation on compar-

able numbers of single cells has, to our knowledge, been achieved

only for specialized datasets involving just two probes per cell

(Pennington et al., 2007).

In the present work, we address the need for algorithms for evo-

lutionary model inference for tumor phylogenetics capable of han-

dling large single-cell datasets, with specific application to FISH

copy number data. We build on prior work of our group on max-

imum parsimony inference using a multiscale model of genomic

copy number variation (Chowdhury et al., 2014) by replacing an un-

weighted formulation of the problem with a weighted version for

which we can then infer rate parameters. Our major theoretical re-

sults include algorithms, substantially different from prior methods

(Chowdhury et al., 2014), to construct weighted parsimonious se-

quences of single gene gains/losses, whole chromosome gains/losses,

and whole genome duplications so as to infer the distance between

configurations of gene copy numbers between any pair of cells.

These new methods allow us to infer trees from models of distinct

evolutionary rates of gain or loss for different genes and at different

scales within a genome. We use these tree inferences with an expect-

ation maximization (EM)-like (Dempster et al., 1977) model infer-

ence method to combine estimation of the gain/loss rates jointly

with inference of tumor progression models. We apply this collec-

tion of novel algorithms to cervical and tongue cancer datasets of

hundreds of single cells per tumor, although they can be expected to

scale to orders of magnitude larger datasets as they become avail-

able. We show that the resulting models lead to improved power to

predict tumor progression and patient survival relative to prior

methods. Our new methods are implemented in our software,

FISHtrees, for which Cþþ source code and two datasets are avail-

able at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees.

2 Methods

FISH data obtained from tumor cells consist of integer counts of a

set of d copy-number probes per cell gi for i ¼ 1; . . . ;d. Typically,

each probe is used to count the copy number of a particular gene, so

we refer to gi as genes. We refer to an ordered collection of copy-

number counts observable within a cell as a configuration. In the ac-

tual data, we restrict counts to be between LB¼0 and UB¼9.

Between any two configurations, there are one or more muta-

tional paths. We assume that mutations may result in gain/loss of

single genes (SD), gain/loss of one copy of each gene on a common

chromosome (CD) and duplication of all genes in the full genome

(GD). SD gain/loss events for each gene, CD gain/loss events for

each chromosome, and GD events are each assigned a distinct prob-

ability parameter. Forming a phylogenetic tree based on FISH data

involves three tasks: estimating probabilities of each type of event;

using the estimated probabilities to efficiently estimate the max-

imum likelihood path between pairs of configurations; and finding

an approximate maximum-likelihood phylogenetic tree, possibly

Inferring models of multiscale copy number evolution for single-tumor phylogenetics i259
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containing Steiner nodes that represent unobserved or extinct

configurations.

2.1 Estimating rate parameters
We apply an EM-like algorithm, presented as Algorithm 1, to

identify the probability of each possible SD, CD and GD event. We

initialize the method with uniform probability estimates, effectively

leading to unweighted parsimony. Then, at each iteration of the al-

gorithm, we infer a maximum likelihood directed Steiner tree

(applying Algorithm 2) using the parameter values inferred at the

previous iteration. We treat this as the E-step of the algorithm. This

step is simplified relative to strict EM in that it uses a single optimal

model fit, rather than an expectation over the solution space in the

E-step as in our prior work (Pennington et al., 2007), but should

yield comparable results to true EM in the limit of large numbers of

tree edges. In the M-step, we then update the parameter values for

each event based on the fraction of times that event is inferred across

the tree edges, with the addition of a pseudocount of 1 (line 7) to ac-

count for events with inferred counts of zero.

2.2 Constructing a phylogenetic tree
In Algorithm 1, the E-step involves generating phylogenetic trees via

calls to a heuristic median-joining-based algorithm for inference of

Steiner nodes in the tumor phylogenies. The key steps of this tree-

building algorithm are summarized in Algorithm 2. The code first

builds a directed minimum spanning tree (MST) T based on the

observed cell types. As in standard median-joining (Bandelt et al.,

1999), it uses a heuristic strategy to solve the hard problem of infer-

ring unobserved Steiner nodes by seeking to identify triplets of taxa

that can be more parsimoniously

Algorithm 1. Infer the rates of SD, CD and GD events using

statistics from tumor phylogenies. The

GenerateSteinerTree() routine uses Algorithm 2 to infer

Steiner trees based on the set of cell states and parameter val-

ues. The vector p contains the current estimate of the proba-

bilities of each mutation type, initialized with uniform rates in

the present work. N represents the set of nodes in the most

recently computed Steiner tree; initially, it is the set of config-

urations in the observed data. The positive value e is a con-

vergence tolerance, and max iter is the maximum number of

iterations. The algorithm returns an updated vector p of esti-

mated mutation probabilities and final inferred phylogeny T
on the input taxa N and any inferred Steiner taxa using the

weights from the inferred p.

1: function EstimateParameters(N , p, e, max iter)

2: T  GenerateSteinerTreeðN ; pÞ
3: N  nodesðT Þ
4: for k 1;max iter do

5: c EdgeTypeCountsðT Þ
6: q p

7: pi  ð1þ ciÞ=
X

j
ð1þ cjÞ for i ¼ 1; lengthðcÞ

8: if
X

i
jpi � qij � e) then

9: break

10: else

11: T  GenerateSteinerTreeðN ;pÞ
12: N  nodesðT Þ
13: return p, T
14: end function

connected by positing an unobserved ‘median’ taxon sitting between

them. Algorithm 2 iterates over each node triplet in T for which one

node is the parent of the other two nodes in order to identify these

median Steiner nodes that reduce tree cost. We define the lattice

points of a triplet to be the set of configurations that agree in each

dimension with at least one of the triplet. Each lattice point is con-

sidered in arbitrary order as a possible Steiner node. If a lattice point

is not already in T , a new tree, called the median tree, is created by

adding that lattice point as a node and by connecting it via three

edges with one incoming edge and two outgoing edges. If the result-

ing weight, calculated as explained in the following subsection, is

less than the weight of the previous best tree, the lattice point is

added to the tree. The best tree found by this procedure is returned.

Algorithm 2. Main steps in the algorithm to generate tumor

progression trees with particular rates for each of the SD, CD

and GD events. N is a set of configurations that must be

nodes of the generated tree. The vector p contains the prob-

ability of each type of mutation. The algorithm returns an

inferred phylogeny T for the given inputs N and p.

1: function GenerateSteinerTree(N , p)

2: T  DirectedMSTðN ; pÞ
3: best TreeLikelihoodðT ; pÞ
4: for all ðu; v;wÞ  TripletsðT Þ do

5: for all s LatticePointsðu; v;wÞ do

6: if s =2T then

7: Nþ  nodesðT Þ [ fsg
8: U  DirectedMSTðNþ; pÞ
9: if TreeLikelihood(U; pÞ > best then

10: best TreeLikelihoodðU;pÞ
11: T  U
12: return T
13: end function

2.3 Likelihood estimation
Although the basic median-joining strategy can be adapted to this ap-

plication as a way of heuristically solving the hard problem of Steiner

node inference, that strategy still depends on having a way to accur-

ately estimate likelihoods and reconstruct likely paths of mutations

between pairs of taxa. This latter task is very different for our model

of copy number mutation than for more conventional character-based

phylogenetics and requires novel theory and algorithms. The bulk of

our theoretical conributions are directed to this sub-problem of find-

ing minimum-weight paths between arbitrary pairs of taxa. We pre-

sent here novel algorithms specifically for estimating the likelihood of

the minimum weight SDþCDþGD path between two configur-

ations. Due to space limitations, proofs of correctness of all of the

claims in this section are deferred to Supplementary Materials.

In developing likelihood estimation algorithms, it is both concep-

tually and computationally easier to work with edge weights rather

than edge probabilities. The weight w of an edge is related to the

probability p of the event inferred across that edge by the formula

w¼�log p. Edge weights are additive, and the task of finding a

maximum likelihood path or tree is equivalent to the task of finding

a minimum weight path or tree.

The process of finding minimum-weight SDþCDþGD paths is

presented at a high level as Algorithm 3. The algorithm works in

three steps. First, in the function DoublingPath, we calculate the

shortest-length SDþGD path between configurations Cs and Ct for

i260 S.A.Chowdhury et al.
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paths having k ¼ 0; . . . ;m genome duplication events. Each of these

paths defines a set of zero or more genome duplication points, con-

figurations at which a genome duplication occurred. Second, in the

function OnePathCost, we connect the endpoint of each genome

duplication point with the start point of the next, or with Ct for the

last genome duplication, using minimum-weight SDþCD paths,

computed using Algorithm 5. In the third and final step, at line 2,

we choose the lowest-weight of these mþ1 SDþCDþGD paths;

ties are irrelevant because we only need the path’s weight.

Algorithm 3. CalculateMinCost returns the minimum cost

of converting a copy number profile Csðg1; . . . ; gdÞ to another

copy number profile Ctðg1; . . . ; gdÞ using combinations of SD,

CD and GD events. Ds;ch
w provides the minimum cost of an

SDþCD path, as computed by Algorithm 5. B is a table pro-

viding duplication points of minimum-weight SDþGD paths,

derived by calling Algorithm 4.

1: function CalculateMinCost(Cs;Ct;B)

2: return min OnePathCost Cs;Ct;B; kð Þ j k 0;mgf
3: end function

4: function OnePathCost(Cs;Ct;B; k)

5: cost 0

6: for each set ðgq; . . . ; grÞ on the same chromosome do

7: path DoublingPathðB; k;Cs;Ct; gq; . . . ; grÞ
8: for i 1;kþ 1 do

9: cost costþDs;ch
w pathði; �Þ; pathðiþ 1; �Þð Þ

10: return cost

11: end function

12: function DoublingPath(B, k, Cs; Ct, gq, . . . , gr)

13: for p 1; r� qþ 1 do

14: i pathð1;pÞ  Cs gpþq�1

� �
15: j pathðkþ 2; pÞ  Ct gpþq�1

� �
16: for ‘ kþ 1 downto 2 do

17: j pathð‘;pÞ  Bði; j; ‘� 1Þ
18: end function

2.4 Finding shortest-length SD 1 GD paths
The function DoublingPath within Algorithm 3 is handled largely

via a preprocessing step by which we construct a table of paths of

mutation of single genes indexed by starting and ending copy num-

bers and numbers of whole-genome duplication events. This table is

passed via the input B to Algorithm 3. For two configurations, and

for a fixed number of genome duplication events, an SDþGD path

with the minimum number of edges (i.e. the shortest-length path)

may be quickly generated using this table. Pseudocode for this pre-

processing step of finding optimal SDþGD paths is provided as

Algorithm 4. For any fixed number of genome duplication events,

the shortest-length SDþGD path between two configurations with

the specified number of GD events may be computed one compo-

nent at a time. For each component, a shortest length path may be

found by adding SD losses or gains preceding and following genome

duplication events to choose the most favorable duplication events

given the starting and ending copy number. For a single component,

shortest-length SDþGD paths have a well-defined structure.

Briefly, for a fixed number of GD events, the condition that the

SDþGD path be of minimal length requires that GD events be

taken as late as possible. This observation is proved formally in

Supplementary Theorem S17, provided in the Supplementary

Material.

Given that the GD events in a SDþGD path must be taken as

late as possible, there are only two possible ways a path containing a

GD event may end: the path may end with a GD event (implying the

end copy number is even) or the path may end in an GD event fol-

lowed by an SD event (implying that the end copy number is odd).

The observation suggests an algorithm for finding the duplication

points in the shortest SDþGD path between copy numbers i and j

for a single gene and a fixed number k genome duplications. One

need only start at j, consider the one or two possible duplication

points for the last GD event in a shortest-length SDþGD path ter-

minating at j, and then choose the better of the duplication points by

finding the shortest-length SDþGD path having exactly k�1 dupli-

cations between Cs and the duplication point. Algorithm 4 exploits

this approach to construct a table of shortest paths for all pairs of

taxa i and j, minimizing over the small set of possible numbers k of

genome duplication events.

Consider the shortest SDþGD path between ðg1; g2Þ ¼ ð2;2Þ
and (9, 6), with the condition that the path have exactly one genome

duplication. One would first connect (2, 2) to (4, 3) with two gains

of g1 and one gain of g2. Then one would insert an edge representing

a genome duplication between (4, 3) and (8, 6). Finally, one would

connect (8, 6) to (9, 6) using a single gain of g1. Supplementary

Theorem S17 implies that, for this example, inserting the one

required genome duplication at any other copy number configur-

ation would result in a path with more edges.

For a fixed number of genome duplication events, only a limited

number of duplication points need to be considered. Moreover, be-

cause duplication increases copy number exponentially, it suffices to

consider paths with 0; 1; 2; . . . ;m duplication events, where

m¼ dlog2(UB)e (Supplementary Corollary S18 in Supplementary

Materials). In our code, UB¼9, so m¼4.

In Algorithm 4, cases in which the copy number of some gene is

zero in Cs and Ct are special. When a copy number starts at zero,

there is no simple biological mechanism for daughter cells to regain

that gene. Thus, we do not attempt to calculate paths for which a

copy number changes from zero to non-zero, but rather just assign

all such paths an infinite weight. Cases in which the copy number

end at zero are also special. In such cases, the optimal SDþGD path

is to lose all copies of the gene and then cycle from 0 to 0 on all gen-

ome duplication events. For brevity, we exclude such cases from the

pseudocode, though code to handle these cases is implemented in

the FISHtrees software.

2.5 Finding minimum-weight SD 1 CD paths
It remains to define an algorithm to identify a minimum-cost

SDþCD path between two configurations, which we denote s and

t. SD and CD steps may reordered so that the SD and CD steps that

affect each chromosome are grouped together. For instance, if g1

and g2 are on chromosome 1, and g3 and g4 are on chromosome 2,

one may generate an optimal path from ð2;2; 2; 2Þ to ð3;4;1; 0Þ by

taking an optimal SDþCD path from ð2;2; 2; 2Þ to ð3; 4;2; 2Þ in

which each edge only affects genes on chromosome 1, and then

following an SDþCD path from ð3;4; 2; 2Þ to ð3; 4; 1;0Þ in which

each edge only affects genes on

Algorithm 4. Fill tables representing shortest length SDþGD

paths for a single gene for all possible starting and ending

copy numbers. n represents the maximum copy number

allowed for any gene and m represents the maximum number

of GD events to be considered. On exit, Bði; j; kÞ contains the

kth duplication point and L(i, j, k) the number of SD gains

Inferring models of multiscale copy number evolution for single-tumor phylogenetics i261
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and losses for the shortest length SDþGD path from i to j,

with the constraint that k duplications occur.

1: function FillGDTables(n,m)

2: for k 0;m do

3: for i 1;n do

4: for j 1;n do

5: if k ¼ 0 then

6: Lði; j;0Þ  max ði� j; j� iÞ
7: else if j is even then

8: Bði; j; kÞ  j=2

9: Lði; j; kÞ  Lði; j=2; k� 1Þ
10: else

11: if j > 1

12: ‘ Lði; ðj� 1Þ=2;k� 1Þ
13: else

14: ‘ 1
15: if j < n then

16: u Lði; ðjþ 1Þ=2; k� 1Þ
17: else

18: u 1
19: if ‘ < u then or ð‘ ¼ u and i � jÞ then

20: Bði; j; kÞ  ðj� 1Þ=2
21: Lði; j; kÞ  Lði; ðj� 1Þ=2;k� 1Þ þ 1

22: else

23: Bði; j; kÞ  ðjþ 1Þ=2
24: Lði; j; kÞ  Lði; ðjþ 1Þ=2;k� 1Þ þ 1

25: return B;L

26: end function

chromosome 2. Therefore, it suffices to consider the case in which

all genes are on one chromosome.

The algorithm for computing the SDþCD distance is centered

around the concept of a zigzag subpath, which is so named because

its construction focuses on alternations between consecutive gain

and loss events.

For example, consider the case of finding an optimal SDþCD

path between ðg1; g2; g3; g4Þ ¼ ð2;2; 2; 2Þ and ð5;5; 4; 3Þ, where all

genes are on the same chromosome. Assuming equal edge weights,

one may show that any optimal SDþCD path consists of three CD

gains, one SD loss of g3, and one SD gain each of g1 and g2. Whether

such a path is of minimum weight is non-obvious and dependent on

the weight of each type of edge. From theory developed in

Supplementary Materials, it suffices to consider intermediate nodes

on the zigzag path

ð2; 2;2; 2Þ!CDð3; 3; 3;3Þ!SDð3;3; 3; 2Þ!CDð4; 4;4; 3Þ

!SDð4;4;3; 3Þ!SDð4; 4; 3;2Þ!CDð5;5; 4; 3Þ:

This path demonstrates the characteristic pattern of gains and

losses of a zigzag path: before each CD step, SD steps in the opposite

direction are inserted to prevent the path from having an intermedi-

ate point with a more extreme copy number than the endpoint of

the path. For the formal definition of a zigzag path, see

Supplementary Materials.

A zigzag path as a whole may not be optimal, and in our ex-

ample, is not optimal if all edges have equal weight. However, a key

observation is that for endpoints s and t, there is an optimal

SDþCD path that starts with a (possibly empty) subpath of a zigzag

path ending at intermediate point r followed by a series of SD steps

from r to t, but no further CD steps (Supplementary Theorem S13 of

Supplementary Materials). Furthermore, the initial zigzag subpath,

if non-empty, ends with a CD step. In our example of computing a

path between (2, 2, 2, 2) and (5, 5, 4, 3), assuming that all edges

have equal weights, the initial zigzag subpath ends at intermediate

point (4,4,4,3). The remainder of the optimal path consists only of

SD steps and may be trivially computed.

Between two configurations, there are two types of zigzag path,

one containing only CD gains and the other containing only CD

losses. It is shown in Supplementary Materials (Supplementary

Lemma S3) that there is no advantage to considering SDþCD paths

with gain and loss of the same chromosome. More surprisingly, it is

shown that for a given chromosome, only one of the two zigzag

paths may result in a beneficial series of zigzag steps and a non-zero

cost (Supplementary Theorem S15). This mathematical result under-

lies the logic in Algorithm 5 that first tests if taking the CD gain zig-

zag path leads to a benefit. If so, this sense is used to find a

provably optimal SDþCD path, otherwise the CD loss zigzag path

is used. The pseudocode is presented as Algorithm 5, which defines

a variable r (for sense) that takes the value�1 to indicate a zigzag

loss (a zigzag subpath having only CD losses) or 1 to indicate a zig-

zag gain.

Algorithm 5. Compute the weight of an optimal SDþCD

path between configurations s and t, assuming all genes are

on the same chromosome. The vectors wþ and w� contain

the weights of SD gains and losses, respectively, and cþ and

c� are the weights of CD gains and losses. The algorithm re-

turns the cost of a minimum-weight path between s and t for

the input weight function, assuming only SD and CD events

are used.

1: function SCcost(s, t, wþ, w–, cþ, c�)

2: r 1

3: cost; r ZigZagðr; s; t;wþ;w�; cþÞ
4: if cost ¼ 0 then

5: r �1

6: cost; r ZigZagðr; s; t;w�;wþ; c�Þ
7: for k 1; lengthðrÞ do

8: if rk < sk then

9: cost costþwþk
10: else if rk > sk then

11: cost costþw�k
12: return cost

13: end function

Thus, we need to define a subroutine to determine the cost of an

initial, possibly zero-length, beneficial zigzag path and its endpoint.

The algorithm is based on Supplementary Theorem S13 of

Supplementary Materials and pseudocode is presented as Algorithm

6. After each CD step of sense r is added to the zigzag path, the al-

gorithm tests whether adding the CD step, and the SD steps of the

opposite sense that precede it, has lower cost than terminating the

initial zigzag subpath after the previous CD step, or at the start if

there is no previous CD step. The endpoint of the best initial sub-

path and the cost of this subpath are returned. At lines 8–9, the costs

of the SD steps that undo some of the effects of the CD step are tal-

lied. At lines 10–11, the benefits of using a CD step to change the

counts of multiple genes in one step are tallied. If benefits exceed

costs, then at lines 14–15, the count is changed by 1 for those genes
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that are modified by the CD step but do not have a compensatory

SD step of the opposite sense.

2.6 Complexity analysis
We conclude the description of methods by analyzing the complex-

ity of our algorithms. For this analysis, we denote the maximum

number of GD events as m, the upper bound of gene copy number

(UB) as n, the total number of probes as d, and the total number of

unique copy number profiles (taxa) in a dataset as l. We separately

parameterize by the number of Steiner nodes introduced, s, because

while this could in principle be as large as ðnþ 1Þd it is in practice a

small constant.

Algorithm 6. Compute an optimal initial zigzag path of sense

r from s on the way to t, assuming all genes are on the same

chromosome. The vector a represents the weight of SD steps

of sense r, b representing the cost of SD steps of the opposite

sense, and c is the cost of a CD step of sense r. The algo-

rithm returns the cost of the inferred path, full cost, and the

ending taxon r of the initial zigzag path, which will itself be

an intermediate node on the path from s to t.

1: function ZigZag(r, s, t, a, b, c)

2: r s

3: fullcost 0

4: while true do

5: cost c
6: benefit 0

7: for k 1; lengthðtÞ do

8: if rk 6¼ 0 and rðrk � tkÞ � 0 then

9: cost costþ bk

10: else if rk 6¼ 0 then

11: benefit benefitþ ak

12: if cost � benefit then break

13: for k 1; lengthðtÞ do

14: if rk 6¼ 0 and rðrk � tkÞ < 0 then

15: rk  rk þ r
16: fullcost fullcostþ cost

17: return fullcost, r

18: end function

We are primarily interested in the running time of Algorithm 1,

for which the time per iteration is dominated by the cost of calling

Algorithm 2, which in turn is dominated by the cost of the algorithm

used to find directed MSTs. The MST algorithm finds an optimal

tree with ‘ nodes, out of a dense graph of Oð‘2Þ possible edges. The

implementation in FISHtrees uses the method of Karp (1971), which

has a complexity of Oð‘3Þ. The complexity can be reduced to Oð‘2Þ
using the method of Tarjan (1977).

The number of calls to the MST routine in Algorithm 2 is

bounded by the number of triplets considered, Oðl3Þ, and the num-

ber of possible lattice points examined per triplet, Oð3dÞ. Because

only the lattice points from triplets involving the observed taxa are

considered, the number of Steiner nodes added does not affect the

number of calls to the MST routine. It does, however, affect the

complexity of finding an optimal MST, yielding a worse-case bound

of O ð‘þ sÞ3
� �

operations. Thus, in total, the calls to the MST rou-

tine in Algorithm 2 have complexity O ‘3ð‘þ sÞ33d
� �

.

In addition, each application of the MST algorithm requires us

to generate pairwise distances through Oððl þ sÞ2Þ calls to Algorithm

3. The cost of these calls does not approach the cost of applying the

MST algorithm, in theory or practice. It can be shown that an appli-

cation of Algorithm 3, including the calls to Algorithms 5 and 6 re-

quires Oðm2nd2Þ operations, which may also be understood as

Oðd2Þ as m and n are parameters that are rarely changed. Algorithm

4 is irrelevant to the complexity analysis as it produces a table that

does not depend on the observed data and that for typical values of

m and n comfortably fits in memory on a typical desktop computer

in 2015. Accumulating all of these contributions gives us a total run-

ning time of Oðl3ðl þ sÞ33d þ ðl þ sÞ2ðm2nd2ÞÞ for Algorithm 2 and

for each iteration of Algorithm 1.

Typical values of the parameters in practice for current FISH data-

sets are n � 9; m � log2nb c � 3; d � 8, and l � 250. Theoretical

running times are polynomial in all factors except d. Because actual

times on datasets of this approximate size are measured in seconds

(see ‘Simulation Results’ in Supplementary Materials S2) the method

can be expected to remain practical for appreciably larger numbers of

cells (l) as might be anticipated for newer FISH data. Significantly

larger numbers of probes (larger d) would be problematic for the pre-

sent algorithms, however, and alternatives might thus be needed if sin-

gle-cell sequencing becomes practical for estimating copy numbers of

large numbers of cells. It is difficult to judge how numbers of iter-

ations of Algorithm 1 required for convergence might be affected by

much larger l or d, leaving some uncertainty about performance on

data characteristics one might reasonably anticipate in the future, al-

though the number of iterations needed is effectively a small constant

for the datasets currently available to us.

3 Results

We applied our parameter inference algorithms to FISH datasets on

two kinds of human cancers: cervical cancer and oral (tongue) can-

cer. The primary datasets used are as follows: (i) Dataset CC1

(Wangsa et al., 2009) consists of paired primary and metastatic cer-

vical cancer samples collected from 16 patients and primary samples

collected from 15 patients whose tumors did not metastasize probed

on four oncogenes residing on distinct chromosomes (LAMP3,

PROX1, PRKAA1 and CCND1); (ii) Dataset TC [D.Wangsa et al.,

submitted] consists of 65 single samples collected from tongue can-

cer patients probed for four genes located on distinct chromosomes

(TERC, EGFR, CCND1, TP53), with tumor stages [ranging from 1

(least advanced) up to four (most advanced)] available on all pa-

tients and tobacco usage (a known risk factor), survival, and dis-

ease-free survival out to 73 months available on most patients.

Because neither of these datasets have more than one probe per

chromosome, we do not consider CD events in these tests. Two add-

itional datasets, both of which have multiple genes on at least one

chromosome, are analyzed in the Supplementary Materials.

We have additionally conducted a series of simulation tests to ver-

ify that the method accurately infers phylogenies and model param-

eters from data of known ground truth. These tests verify on a set of

five parameter scenarios that the methods are effective at inferring ac-

curate model parameters in the presence of a range of mutation rates

between genes, chromosomes, and whole-genome events. The tests

further confirm that the resulting phylogeny inferences are substan-

tially more accurate than those derived from standard phylogeny al-

gorithms applied to the same data across the range of scenarios and

that this accuracy is achieved with realistic sizes of dataset. Due to

space limitations, these simulation results are deferred to the

Supplementary Material. The protocol for generating simulated data

is described under Simulation Methods in the section Supplementary
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Methods. The results appear under Simulation Results in the section

Supplementary Results and in Supplementary Figures S4–S9.

3.1 Identifying progression markers in cervical cancer

(CC1) data
We applied our algorithm on each of the samples in each of the data-

sets separately and inferred probabilities of each SD and GD event.

We show the boxplots for the inferred parameter values in the CC1

dataset in Figure 1, across 31 primary (Fig. 1A) and 16 metastatic

(Fig. 1B) samples. ‘Gain of LAMP3’ is the most frequent event in

both primary and metastatic samples, similar to the findings re-

ported in our past work (Chowdhury et al., 2013).

Next, for each pair of 16 primary and 16 metastatic samples, we

performed statistical tests based on the ‘tree edge count’ statistic,

which quantifies, for each tumor phylogenetic tree, the total number

of edges across which gain or loss of each gene is inferred. Because

the four genes analyzed in the CC1 dataset are all oncogenes, we

focused on gains, although losses do occur sometimes. To investi-

gate further whether each of the four genes may be more important

in the primary or metastatic phase of cervical cancer, we computed

the proportion of edges that represent gains of that gene in each

sample for the 16 pairs. We present results for PROX1 with some

motivation from previous studies of this gene. A prior study of colo-

rectal cancer showed by various experimental techniques that over-

expression of PROX1 is a driver of a pre-cancerous dysplasia

leading to the primary tumor (Petrova et al., 2008). This study led

others to investigate the hypothesis that overexpression or copy

number gains of PROX1 would be similarly important in primary

cervical cancers. However, static analysis of these CC1 FISH data

(Wangsa et al., 2009) and an unrelated dataset in which PROX1

protein expression was measured by immunohistochemisty

(Sotiropoulou et al., 2010) gave no significant results about

PROX1.

Using our models, a paired t-test of the proportion of tree edges

that are PROX1 gains showed a significantly higher proportion in

the primary tumors (P-value<0.007, one-sided, nominal; P-

value<0.028, corrected for multiple testing of four genes). The

unpaired t-test also gave nominal significance (P-value<0.042,

one-sided). A less powerful unpaired Wilcoxon test of the propor-

tions (P-value<0.04, one-sided) and an even less powerful bino-

mial test comparing which of the two proportions is greater in

each pair (P-value<0.04, one-sided) both supported the conclu-

sion that the proportion of edges that are PROX1 gains is greater

in the primary CC1 samples. These results are consistent with the

colorectal cancer study (Petrova et al., 2008) and show how dy-

namic modeling of tumor progression can give insights that static

analysis misses.

3.2 Classification of cervical samples
We performed classification experiments using tree-based features

to separate samples from different stages of cervical cancer in CC1.

We used these experiments to validate our models and demonstrate

their value, based on our past observation that tree progression

models allow one to distinguish between trees drawn from distinct

current or future progression states (Chowdhury et al., 2013, 2014).

We used the following set of tree-based features: (i) edge count: eight

features corresponding to the fractions of progression tree edges

showing gains and losses of each gene; (ii) Tree level: features corres-

ponding to the fraction of cells at each depth in the progression

trees; (iii) Parameter values: nine features corresponding to inferred

gain and loss probability of each gene (SD), and the probability of a

whole genome duplication event (GD).

We applied these methods for three classification tasks: (a) dis-

tinguishing primary samples that progressed to metastasis from their

paired metastatic samples, (b) distinguishing all primary samples

from all metastatic samples and (c) distinguishing primary samples

that metastasized from primary samples that did not metastasize.

We compared the classification performance of the features from

our current model with the SD-only (pure rectilinear) model

(Chowdhury et al., 2013) and unweighted SDþGD (Chowdhury

et al., 2014) model of tumor progression. Because each gene resides

on a distinct chromosome in CC1, CD events are irrelevant. We per-

formed 500 rounds of bootstrapping and computed mean accuracy

and standard deviations of accuracy.

The results are presented in Figure 2. The parameter value-based

features (i.e. the inferred phylogenetic rate models themselves) are

the most accurate predictors for the first and second tasks of sepa-

rating primary samples from the metastatic ones. For the clinically

important problem of determining whether a given primary tumor

will metastasize, tree level features show improved prediction accur-

acy by at least 3.5% over all other feature sets considered, including

comparable feature sets from the earlier unweighted models.

3.3 Survival analysis in the TC dataset
For the TC dataset, we focused our analyses of the tree-progression

models on trying to identify predictors of survival. Based on earlier

work suggesting that the distribution of node depth was a useful pre-

dictor of progression in CC1 (Chowdhury et al., 2013), we investi-

gated whether the tree level cell distribution is also a predictor of

overall and disease-free survival time in TC. Similarly to the cervical

cancer samples, we considered distribution of cells across all the lev-

els of the tumor phylogenetic trees inferred on the tongue cancer

samples. Using the cell distribution vector as features, we performed

K-means clustering to partition the samples into two subgroups. We

used ‘Euclidean’ as the distance measure for the clustering and per-

formed clustering with 10 restarts using the new initial cluster cen-

troid position.

Fig. 1. Inferred probabilities of events for primary (A) and metastatic (B) cervical samples. WGD refers to the rate of whole-genome duplications

i264 S.A.Chowdhury et al.

 at N
IH

 L
ibrary on June 14, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv233/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv233/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv233/-/DC1
http://bioinformatics.oxfordjournals.org/


We performed Kaplan–Meier (KM) analysis (survdiff function

in R) to compare either the survival time or the disease-free sur-

vival time between the two groups obtained from the two sub-

groups of samples (Fig. 3). The subgrouping of patients yielded a

significant difference in overall (P-value¼0.0443, two-sided) and

disease-free (P-value¼0.0371, two-sided) survival between the

two patient groups. The good prognosis cluster was assigned 33

patients and the bad prognosis cluster was assigned 32 patients.

Some insight into the differences in the two groups can be gained

by examining the cluster centers. The cluster center of the good

prognosis group has 33% of its weight in the first 5 tree levels and

90% of its weight in the first 10 tree levels, while the cluster center

of the bad prognosis group has only 16% of its weight in the first 5

tree levels and only 51% of its weight in the first 10 tree levels. We

repeated the same clustering procedure and KM analyses using

trees derived from our previous unweighted SDþGD algorithm

(Chowdhury et al., 2014) but did not observe statistically signifi-

cant differences in overall (P-value¼0.0784) or disease-free (P-

value¼0.14) survival between the two patient groups with the

older methods.

We then performed multivariate survival analysis using the Cox

proportional hazards (COXPH) model (survfit function in R) to test

whether the new test statistics can predict survival or disease-free

survival independent of tumor stage. The results are presented in

Figure 4. The combined P-value is statistically significant, showing

that the two covariates are independently associated with overall

(disease-free) survival time. The hazard ratio is higher to a signifi-

cant degree for tree statistic-based subgrouping compared to tumor

stage, meaning there is a higher risk of death (disease) if a patient is

assigned to the higher risk category by the tree statistic subgrouping,

independent of tumor stage.

4 Discussion

We have developed algorithms for the problem of inferring tumor-

specific mutation parameters and applying these to improve single-

tumor phylogenetic tree inference at the cellular level, with specific

application to inferring multiscale copy number evolution from sin-

gle-cell FISH data. This work involved developing efficient algo-

rithms for a weighted parsimony model of copy number evolution,

Fig. 2. Classification results on the CC1 dataset

Fig. 3. KM curves for the test of association between overall (A) and disease-free (B) survival time and tree level cell count statistics-based subgrouping of

patients
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which required substantially different methods than the unweighted

model in (Chowdhury et al., 2014). We then used an EM-like infer-

ence method to learn weight parameters jointly with tree building,

providing for the first time scalable algorithms capable of learning

tree models for hundreds to thousands of single cells isolated from

individual tumors. This work addresses a key need for learning

tumor-specific evolutionary models capable of dealing with realistic

levels of cellular heterogeneity in single tumors. We showed that the

resulting models provide insight into tumor-specific variation and

lead to improved prediction of future tumor progression in multiple

tumor types.

This work makes an important step towards scalable algorithms

for inferring cancer-specific evolution in single tumors, although much

remains to be done to realize the full potential of the approach. There

are many possible avenues for improvement in the methods, either to

more closely approach true optima for the given objective function or

to develop novel objectives describing more realistic and detailed mod-

els of tumor evolution mechanisms without sacrificing efficiency.

Alternative approaches for inferring evolutionary models from the

phylogenies, such as the phylogenetic profiling approaches of Csu†rös

(2010), may also provide more accurate and detailed parameter infer-

ences for any given objective function and phylogeny inference algo-

rithm. Another important limitation is the focus on FISH data. FISH is

currently the only technology for which it is practical to profile gen-

omic variation in hundreds of single cells per patient for moderate-

sized patient populations, an essential feature for tumor progression

prediction. The present work thus focused on models of copy number

evolution specifically, as it is both the most common form of hyper-

mutability in tumor evolution (Heng et al., 2013) and the mechanism

most easily profiled by FISH. FISH, however, offers a far more limited

portrait of variation of each cell than does single-cell sequencing

(Navin et al., 2011). Although single-cell sequencing is not yet prac-

tical for the numbers of cells needed to study variation in evolutionary

mechanisms across patient populations, one can reasonably anticipate

that it will eventually overcome that limit, motivating new algorithmic

problems to deal simultaneously with hundreds to thousands of cells,

potentially millions of markers of variation, and with the diverse

classes of genomic variation that sequencing data can reveal.
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